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Abstract—In the digital age, computer programming is a 

valuable skill. However, novice programmers typically 

encounter problems and challenges that lead to negative 

reactions and dropout. This study examines how a group 

of university computer-registered students without 

programming experience learn computer programming 

through the coding of robots. Instead of traditional block-based 

programming to teach computer programming, the study used 

a robotic element and text-based programming to develop 

prototypes offering live autonomous code output. A research 

model was created and tested to determine contributing factors 

to how students perceived computer programming through 

coding robots. Belief, Interest, Mathematics, Knowledge, 

Confidence and Motivation formed the latent variables. The 

research hypotheses are: 1) Belief affects Confidence, 2) 

Confidence affects Knowledge, 3) Interest affects Confidence, 4) 

Mathematics affects Knowledge, and 5) Motivation affects 

Confidence. Participants included seventy-five students who 

completed a 5-point, 30-item Likert scale survey to assess their 

robotics computer programming experience at a University in 

South Africa. Partial least square-structural equation modelling 

was conducted to investigate the relationship between latent 

variables. The model explains the relationship between Belief 

and Confidence, Confidence and Knowledge, Interest and 

Confidence, Mathematics and Knowledge, and Motivation and 

Confidence. Results demonstrate that students studying text-

based programming directly with the robotic element were 

successful. As participants saw their code run on the prototype, 

robot coding made text-based coding easier to understand. 

Coding structures were clarified by using robotics to make 

computing programming concrete. The learning of computer 

programming integrated through the building of prototypes 

resulting in autonomous robots enhances the learning 

experience of text-based code. This research contributes 

empirical evidence and elucidates the factors that may influence 

learning satisfaction of text-based computer programming 

through coding robotics. 

 
Keywords—coding and robotics, computer programming, 

physical manipulatives 

I. INTRODUCTION 

Computer programming can be challenging since students 

face a steep learning curve [1, 2], likely without prior 

knowledge [3]. However, students interested in computer 

programming are likely to be engaged and motivated to learn 

intrinsically. Research has shown that students with a strong 

interest in programming will likely invest time and effort into 

learning the required concepts and skills [4–6]. At the same 

time, student interest plays a crucial role in learning computer 

programming. Individuals genuinely interested in computer 

programming are more likely to be motivated to learn and 

explore the subject further. Students’ interest in programming 

can be nurtured by providing opportunities to explore real-

world applications through educational  

robotics [2, 3]. Such physical manipulatives allow students to 

apply their programming knowledge in real-world scenarios, 

which can significantly enhance their engagement and 

enthusiasm for the subject [7]. Therefore, it is crucial to 

understand different approaches that can be used when 

teaching programming. There is no approach to introducing 

programming that guarantees the acquisition of programming 

expertise. As a result, the following questions arise: What are 

the best practices for learning computer programming? If 

students consider programming challenging, the researcher 

wonders: How might learning computer programming be 

promoted? Hence, this study sets out to test a proposed model 

by examining the predictors contributing to one’s knowledge 

of programming through robotics, thereby seeking to answer 

the following: What are students’ perceptions of robotics 

when learning to program? 

II. LITERATURE REVIEW 

Motivation plays a crucial role in learning, as when 

students are motivated to learn programming, they are more 

likely to set goals, persevere through challenges, and engage 

in deeper learning [6, 8]. Studies have shown that using 

robots as a tool in programming education can significantly 

increase student motivation [3, 7, 9, 10]. Moreover, it has 

been observed that students were happier, and their 

motivation was higher in programming courses using robots 

than in courses using classical programming education 

methods [11]. Seminal research by South African 

mathematician and computer scientist Seymour Papert 

postulates that educational robotics promotes 

constructionism in that students construct knowledge rather 

than passively assimilate information [12, 13]. 

Confidence plays a crucial role in the learning of computer 

programming. When students have confidence in their 

abilities, they are more likely to take risks, try new things, and 

persist when facing challenges. Students with higher 

confidence levels tend to perform better in programming 

tasks and are more likely to use problem-solving 

strategies [14]. Confidence is a significant factor that affects 

the learning of computer programming. Belief in one’s 

problem-solving ability is crucial to learning computer 

programming. When students believe in their problem-

solving abilities, they approach programming tasks with 

confidence and a positive mindset. This belief can lead to 

increased persistence and resilience when facing challenges, 
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ultimately enhancing learning outcomes [15]. Belief in 

problem-solving abilities can be fostered by providing 

students with opportunities to practice and succeed in solving 

programming problems. By gradually increasing the 

difficulty level of problems and providing appropriate 

support and feedback, students can develop a sense of 

efficacy and confidence in their problem-solving skills [16]. 

Mathematics is an essential skill due to its practical 

applications in physics, engineering, economics, computer 

science, and more [17, 18]. Mathematics forms the 

foundation of many programming concepts, such as 

algorithms, logic, and problem-solving techniques. 

Additionally, math skills are essential for handling complex 

calculations and data manipulation in programming tasks. 

However, research has found conflicting views about the 

relationship between math and programming ability. Some 

studies suggest that math can enhance problem-solving skills 

and logical thinking, which are crucial in programming [19, 

20], and it impacts computer programming [21–23]. On the 

other hand, some argue that it is not a prerequisite for 

becoming a successful programmer or problem solver and 

may have a negative impact [24–26].  

III. MATERIALS AND METHODS 

A. Selection of Constructs/Latent Variables 

Regression analysis carried out in a study by Tsai [27] 

revealed that Mathematics was a positively correlated 

predictor of programming knowledge. The correlation was 

found in a pre-test and post-test. Additionally, an individual’s 

motivation to learn Computer Programming is a crucial factor 

in their acquisition of programming knowledge. As 

Carbone [28] elaborates, those students who exhibited 

motivation “usually undertook to learn programming in their 

own time, sometimes prior to the course commencing, 

working hard at developing their skills”. Computer 

Programming can be perceived as complex and intimidating, 

especially text-based language-specific programming. A 

study carried out by Blanchard [29] found that “hybrid 

programming1 environments can help to transition students 

from blocks to text-based programming while minimising 

negative perceptions of programming”. Thus, a student’s 

belief about coding is important to their programming 

knowledge. Workshops, being practical and hands-on, have 

the potential to build and maintain students’ interest in 

Computer Programming. As remarked by Biggers [30], 

“highly interactive, hands-on introductory CS 

courses…provide a broader overview of potential CS”. An 

individual’s interest in coding can thus affect their knowledge 

of programming. As far back as 2001, Byrne and Lyons 

showed that students enrolled in a programming course are 

prone to show anxiety, such as being less confident—

especially if they do not have prior computer experience [31]. 

Similarly, from a comparative study between coding IDEs, 

Daly [32] commented that “learning abstract programming 

concepts and programming in an environment … can cause 

students to become frustrated, lose confidence”. Therefore, 

confidence in learning coding can potentially affect the 

development of programming knowledge.  

Based on the corpus of the literature reviewed, the survey 

 
1A mix of text-base and block-base environments 

design took into account the following six constructs in 

alignment with the proposed model that have been shown to 

influence knowledge of coding: student confidence in their 

ability to learn programming, student interest in 

programming, student motivation to use Robotics, student 

intrinsic belief that they can solve problems, student 

perception of mathematical influence on programming and 

student knowledge of programming through the use of 

Robotics. 

B. Participants 

Simple random sampling was employed on a homogenous 

population. The population’s characteristics were that they 

were subjects at a University in KwaZulu-Natal, South Africa, 

with no prior computer programming experience. An 

invitation detailing the study, anonymity, and the project’s 

voluntariness was issued. Based on the response to the invite, 

the sample comprised 75 students. 

C. Procedures 

A series of workshops took place during the semester using 

educational robotic kits to introduce the basics of computer 

programming. The kits used were the Arduino and Lego 

Mindstorm series, focusing on text-based coding in Python. 

The workshops covered the following topics: introduction of 

the kits, sensors, data structures, data types, variables, string 

and character handling, math handling, iterations structures, 

selection structures and nested structures. Prototype design 

was the ultimate objective, allowing students to build-code-

test by implementing and integrating real-world scenarios. 

Students were asked to complete a survey at the end of the 

semester. 

D. Instrument 

A 5-point, 30-item Likert scale survey was administered at 

the semester’s end and captured the immediate thoughts of 

their Computer Programming experience using the robotic kit. 

Items were formed based on the six constructs to collate and 

structure the survey. Each construct comprised five items. 

Hence, the survey consisted of 30 items. The internal 

consistency of the items was examined by the composite 

reliability (discussed under indicator reliability), resulting in 

19 items being retained. Composite Reliability is an 

alternative to Cronbach’s alpha. Hair [33] points out that a 

drawback of Cronbach’s alpha is that it implies all indicator 

loadings in the population are equal, which is also known as 

tau-equivalence. 

E. Hypothesis and Model Development 

In PLS-SEM, constructs are known as Latent Variables 

(LV), and items are known as indicators. The model created 

(Table 1) follows the principles of a reflective model since, 

as Garson [34] explains, in such models, “indicators are a 

representative set of items which all reflect the latent variable 

they are measuring”. This is observed in the model created 

during the initial stages of the study (Fig. 1), where all six 

LVs offer loadings onto the respective five indicators. 

Reflective models allow the omitting or dropping of 

indicators that do not matter while sustaining the meaning of 

the LV [34]. It is important to note that omitting indicators 
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that are not significant would be essential in producing a model that makes meaning and sense. 
 

Table 1. Measurement scale 

Latent Variables Items code Items 

Belief 

Belief1 I could come up with a suitable strategy for a given programming project in a short time. 

Belief2 I could manage my time efficiently if I had a pressing deadline on a programming project. 

Belief3 I could find ways of motivating myself to program, even if the problem area was of no interest to me. 

Belief4 I could complete a programming project if someone showed me how to solve the problem first. 

Belief5 I could complete a programming project if I could call someone for help if I got stuck. 

Interest 

Interest1 I hope to use programming sometime in my future. 

Interest2 The challenge of solving problems using programming does not appeal to me. 

Interest3 I can use the thinking developed when programming in my daily life. 

Interest4 I think computer science (programming) is interesting. 

Interest5 I would voluntarily take additional Computer Science courses to learn programming. 

Motivation 

Motivation1 I was more interested in the robotic element (microcontroller) than the programming. 

Motivation2 I found programming attractive through the use of the microcontroller.  

Motivation3 The use of the microcontroller held my attention for longer. 

Motivation4 Easier for me to comprehend and retain information in coding through the use of the physical device (microcontroller).  

Motivation5 Programming the microcontroller was a positive experience for me.  

Mathematics 

Mathematics1 I think mathematics is not needed to be able to program. 

Mathematics2 I can translate the mathematical content into a programming code. 

Mathematics3 I think basic mathematics is needed to be good at programming.  

Mathematics4 I think you would need more than basic mathematics knowledge to program. 

Mathematics5 I think the mathematics involved in programming is technical. 

Confidence 

Confidence1 I am comfortable with learning programming concepts. 

Confidence2 I have little self-confidence when it comes to programming. 

Confidence3 I can learn to understand programming concepts on my own. 

Confidence4 I think I can achieve good grades in programming. 

Confidence5 I am confident that I can solve problems by using programming. 

Knowledge 

Knowledge1 The microcontroller allowed for the understanding of programming.  

Knowledge2 I would have understood the programming concepts without the robotic element (microcontroller). 

Knowledge3 The microcontroller provided a visual aid of what my programming was doing. 

Knowledge4 I could rewrite lengthy and confusing portions of code to be readable and clear. 

Knowledge5 I could write a program that someone else could comprehend and add features to it later on. 

 

 
Fig. 1. The initial form of the model. 

 

Fig. 1 depicts the model in the early stages before running 

any analysis, showing all LVs and indicators. Knowledge is 

referred to as an endogenous LV. An endogenous latent 

variable is an LV informed by at least one other LV [34, 35]. 

In other words, graphically, the model has at least one 

incoming arrow from another LV. The LVs: belief, interest, 

motivation, and Mathematics are referred to as exogenous 

variables since any other LV does not inform them. Hence, 

they do not have any incoming arrow/s from any other LV/s.  

The influence of Mathematics on coding holds mixed 

views regarding its effect on coding knowledge [21–25]. An 

individual’s confidence is informed by their belief, interest, 

and motivation [36–39]. While the latter factors may not 

directly affect knowledge, they have the potential to affect it 

indirectly through confidence [40, 41]. Hence, confidence is 

referred to as a mediating variable, an intervening variable.  
 

Table 2. Set of hypotheses based on model 

Hypothesis Relationship 

H1 Belief  Confidence 

H2 Confidence  Knowledge 

H3 Interest  Confidence 

H4 Mathematics  Knowledge 

H5 Motivation  Confidence 

Note: The alternative hypothesis (Ha) for each relationship 

found in Table 2 is that there is no relationship between the LVs. 
 

Through robotics, knowledge of coding is a dependent LV 
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informed by the following possible contributing factors: 

belief, interest, motivation, confidence, and Mathematics. 

The study will determine if the following relationships exist 

through the SEM-PLS model; hence, they hold true (Table 2). 

F. Sample Size 

The minimum sample size estimation method in PLS-SEM 

follows the 10 times rule [35, 42]. The rule applied to the 

reflective conceptual model in this study would be:  

Sample size > 10 × the largest no. of structural paths 

directed at a particular LV in the structural model. The 

conceptual model (Fig. 1) indicates that the largest number of 

structural paths directed to a particular LV is three (i.e., belief, 

interest and motivation informing confidence). Therefore, the 

sample size aligns with the ten times rule: 75 (sample size) > 

10×3 (largest no. of structural paths) = 75 > 30. 

IV. RESULT AND DISCUSSION 

This study applied Partial Least Squares-Structural 

Equation Modelling (PLS-SEM) to assess the data generated 

from the survey. PLS-SEM is commonly used in business 

industrial research and analysis; however, the statistical 

modelling technique has gained popularity in education 

research [43, 44]. Ramli [45] found that PLS-SEM analysis 

offers fewer contradictory results than regression analysis 

despite PLS-regression models being a subset of PLS-SEM 

models. Garson [34] explains that PLS-SEM models differ 

from regression models as they are “path models in which 

some variables may be effects of others while still be causes 

for variables later in the hypothesized causal sequence”. PLS-

SEM analysis consists of two parts: firstly, it examines the 

measurement model, which consists of indicator reliability, 

convergent reliability, and discriminant validity. Secondly, 

the structural model assesses collinearity issues, path 

coefficients, the significance of the relationships, level of R2, 

effect size (f2) and predictive relevance (Q2).  

A. Measurement Model 

The measurement model is presented in three parts: 

indicator reliability, convergent reliability and discriminant 

validity. Indicator reliability examines the measure and 

validity of the reflective indicator loadings, Cronbach’s 

Alpha (CA) and rho_A (ρA). The convergent reliability 

examines the Average Variance Extracted (AVE) and internal 

consistency. The evaluation of discriminant validity 

considers the cross-loadings, Fornell and Larcker criterion 

and Heterotrait-Monotrait ratio of correlations (HTMT).  

1) Indicator reliability 

The PLS algorithm was executed on the model (Fig. 1) 

with an initial analysis of 300 iterations and later with a 

maximum of 500 iterations, resulting in the outer indicator 

loadings (Fig. 2). The loadings can be considered a form of 

item reliability in reflective models; as Garson [34] describes, 

“the closer the loadings are to 1.0, the more reliable that latent 

variable”. He goes on to express that path loadings for such a 

model should be > 0.7 [34], while Hulland [46] recommends 

that reflective indicator loadings > 0.5 show that the indicator 

is a good measurement of the LV. A more refined and applied 

criterion to this study is by Hair et al. [47], who propose that 

an indicator loading in the range of 0.40 to 0.70 may be 

dropped only if it improves Composite Reliability (CR). 

Therefore, outer loadings of 0.7 or higher are considered 

highly approved, while 0.5 is deemed acceptable [48]. Fig. 2 

depicts the outer loadings of indicators that meet the criteria 

of > 0.7 or are retained because they do not improve CR when 

discarded. 

The CA value evaluates the reliability of the set of 

indicator items. Therefore, it measures the extent to which all 

the LVs in the model are positively related to each other. An 

alpha value greater than 0.7 (α > 0.7) is acceptable [49]. Using 

rho_A (ρA) is a more consistent measure of reliability than 

Cronbach’s Alpha. As Dijkstra and Henseler [50] describe, 

ρA is measured the same as Cronbach’s Alpha and has a 

better reliability measure than Cronbach’s Alpha in 

SEM since ρA is based on the loadings rather than the 

correlations observed between the variables. 

 
Fig. 2. Model showing valid path loadings.  

Note. The weighting scheme was initially set to a maximum of 300 iterations and later set to a maximum of 500 iterations. 
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2) Convergent reliability 

One of the measures of convergent reliability is Average 

Variance Extracted (AVE). AVE is comparable to the 

proportion of variance explained in factor analysis. AVE 

values are between 0 and 1; an AVE > 0.5 is desired [51, 52]. 

Internal Consistency is assessed by validating the Composite 

Reliability (CR), which measures the reliability of the 

indicators where values are between 0 and 1. CR values 

greater than 0.7 (CR > 0.7) prove to show adequate 

consistency [53]. Chin [54] proposed that internal 

consistency is measured through the CR, known as Dillon-

Goldstein’s rho or Jöreskog’s rho. CR is a favoured 

alternative to CA as a test of convergent reliability in a 

reflective model [34]. Demo et al. [55] propound the view 

that CR offers a more reliable measure than CA in SEM. The 

findings support Dijkstra and Henseler [50] when examining 

(Table 3), the cut-off value of ρA (Rho A) > 0.7 ensures 

Composite Reliability (CR > 0.7). 

3) Discriminant validity  

Discriminant validity is the extent to which an LV is truly 

distant from other LVs, which implies that the LV is unique. 

Discriminant validity, also known as vertical collinearity, 

validates the subjective independence of every indicator on 

the LV. The cross-loadings criterion helps reduce the 

presence of multicollinearity amongst the LVs by denoting 

that the AVE of an LV should be higher than the square 

correlations between the LV and all other variables [52, 54, 

56]. In other words, the loadings of an indicator on its 

assigned LV should be a higher value than its loadings on all 

other associated LV values (refer to Table 4, values in bold 

are greater than horizontal associated values).  

The Fornell and Larcker criterion is that the AVE of an LV 

should be higher than the squared correlations between the 

LV and all other variables [52, 54, 56]. The software 

processes this calculation in which the diagonals are the 

square root of the AVE of the LVs (Table 5) and should be 

the highest in any associated column or row. 
 

Table 3. Measurement model including LV (construct) reliability and validity 

Items Loadings AVE CR CA Rho A 

Belief1 0.879 

0.628 

0.834 0.703 0.731 

Belief2 0.741    
Belief3 0.751    

Interest1 0.725 0.553 0.831 0.729 0.725 

Interest3 0.659ǂ     
Interest4 0.779     

Interest5 0.803     

Motivation2 0.728 0.639 0.841 0.716 0.730 
Motivation4 0.803     

Motivation5 0.862     

Mathematics2 0.903 0.795 0.886 0.744 0.751 
Mathematics3 0.881     

Confidence1 0.748 0.572 0.842 0.751 0.750 

Confidence3 0.763     
Confidence4 0.740     

Confidence5 0.774     

Knowledge2 0.766 0.733 0.891 0.821 0.867 
Knowledge4 0.912     

Knowledge5 0.884     

Note: a) Indicator items removed: Belief 4, Belief 5, Interest 2, Motivation 1, Motivation 3, Mathematics 1, Mathematics 4, 

Mathematics 5, Confidence 2, Knowledge 1, Knowledge 3. b) All item loadings > 0.5 indicate indicator reliability [46, 47]. c) All 
Average Variance Extracted (AVE) > 0.5 indicates convergent reliability [51]. d) All Composite. e) Reliability (CR) > 0.7 indicates 

internal consistency [53]. f) All Cronbach’s Alpha (CA) > 0.7 [49]. g) All rho_A (ρA ) > 0.7 [50]. h) ǂ Retained because it did not 

change the CR when dropped/removed. 
 

Table 4. Discriminant validity-indicator item cross-loading 
Items Belief Confidence Interest Knowledge Mathematics Motivation 

Belief1 0.881 0.707 0.505 0.589 0.879 0.624 

Belief2 0.741 0.574 0.371 0.566 0.513 0.493 

Belief3 0.751 0.488 0.370 0.344 0.546 0.249 

Confidence1 0.524 0.748 0.684 0.516 0.444 0.603 
Confidence3 0.604 0.763 0.412 0.557 0.580 0.402 

Confidence4 0.664 0.740 0.416 0.502 0.574 0.548 

Confidence5 0.492 0.774 0.581 0.502 0.426 0.590 

Interest1 0.342 0.463 0.725 0.466 0.332 0.579 

Interest3 0.599 0.594 0.658 0.473 0.570 0.478 

Interest4 0.211 0.470 0.779 0.296 0.131 0.440 
Interest5 0.361 0.499 0.803 0.408 0.250 0.590 

Knowledge2 0.288 0.469 0.472 0.766 0.346 0.591 

Knowledge4 0.652 0.588 0.489 0.912 0.653 0.528 

Knowledge5 0.630 0.674 0.492 0.884 0.705 0.546 

Mathematics2 0.628 0.496 0.314 0.647 0.903 0.330 

Mathematics3 0.879 0.707 0.505 0.589 0.881 0.624 

Motivation2 0.414 0.547 0.488 0.550 0.530 0.728 

Motivation4 0.426 0.492 0.526 0.458 0.255 0.803 

Motivation5 0.576 0.646 0.660 0.512 0.459 0.862 

Note: All item loadings on its assigned latent variable (bold values) are higher than those on all other latent variables. In other words, all the 

indicator’s outer loading on the associated LV is greater than all its loadings on other LVs; therefore, the cross-loadings criterion is  
fulfilled [52, 54, 56]. 
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Table 5. Discriminant Validity- Fornell and Larcker criterion 
Items Belief Confidence Interest Knowledge Mathematics Motivation 

Belief 0.793      

Confidence 0.755 0.756     

Interest 0.531 0.694 0.743    

Knowledge 0.643 0.686 0.562 0.856   

Mathematics 0.838 0.668 0.454 0.694 0.892  

Motivation 0.598 0.710 0.705 0.635 0.527 0.800 

Note: Fornell and Larcker’s criterion has been met in all instances since all values (in bold) are greater than their associated values 

(the values in bold forming the diagonal are the highest compared to associated values across and below). 

 

4) Heterotrait-Monotrait ratio of correlations, 

bootstrapping and normality  

The Heterotrait-Monotrait ratio of correlations (HTMT) 

was developed to address the insensitivity of the Fornell and 

Larcker criterion and cross-loading. Determining if 

discriminant validity is achieved using HTMT requires 

bootstrapping. Although PLS-SEM assumes that the data is 

not normal, unlike CBS-SEM (Covariance Based Structural-

Equation Modelling), this study will still confirm that the data 

is not normal before proceeding to bootstrap. Bootstrapping 

is a nonparametric procedure that allows testing statistical 

significance through a method that uses random sampling, 

mimicking the sampling process- resampling method. It can 

be applied to regression models, giving insight into how 

variable the model parameters are [57]. Bootstrapping 

estimates the spread, shape, and bias of the population’s 

sampling distribution. The observed sample is treated as a 

representation of the population. Bootstrapping creates a 

large, pre-specified number of samples. Every time sampling 

happens during bootstrap, the same number of cases as the 

original sample will be analysed; thus, N bootstrap  n 

samples [54]. The cut-off value for univariate skewness is ±1, 

and kurtosis is ±7 [58, 59]. The cut-off value for Mardia’s 

multivariate skewness is ±1, and kurtosis is ±20 [60].  

The findings from the normality tests (Table 6) show that 

the kurtosis values are within bounds; however, the skewness 

for LVs: Belief, Interest and Motivation are out of bounds. 

Further examining Mardia’s coefficient (Table 7), the values 

of skewness and kurtosis are out of the respective bounds 

(Skewness b> 1; Kurtosis b > 20). The normality assessment 

deduces that the data does not follow the normal distribution; 

hence, bootstrapping can be applied [61]. 

As a result of bootstrapping, the discriminant validity 

based on the Heterotrait-Monotrait ratio of correlations 

(HTMT) can be examined. HTMT estimates the correlation 

between the LV based on the average Heterotrait-

Heteromethod correlation [62]. HTMT is assessed by 

examining the Confidence Interval- Upper Limit (CI-UL) and 

is expected to be less than 0.90 (at the 95% Confidence 

Interval). Therefore, a CI-UL value higher than 0.9 indicates 

a lack of discriminant validity. Ringle [63] purports that 

discriminant validity is not established if the CI-UL value is 

above 1. As a statistical test- testing of the null hypothesis (H0: 

HTMT<1) versus the alternative (Ha: HTMT ≥1) [62], 

HTMT95% Confidence Interval contains the value one or above; 

hence, no discriminant validity.  
 

Table 6. Assessing Normality-Univariate and multivariate skewness and 

kurtosis 

Items Skewness SE_skew Kurtosis SE_kurt 

Belief 1.0581 0.2774 1.5678 0.5482 

Confidence 0.6666 0.2774 0.5753 0.5482 

Interest 1.4769 0.2774 2.7626 0.5482 

Knowledge 0.3320 0.2774 −0.1976 0.5482 

Mathematics 0.7718 0.2774 1.0837 0.5482 

Motivation 1.3041 0.2774 2.1185 0.5482 

Note:  a) Sample size: 75; b) Number of variables: 6; c) SE_skew= 

Standard error skewness; d) SE_kurt= Standard error kurtosis 

 
Table 7. Assessing Normality-Mardia’s multivariate skewness and kurtosis 

Coefficient  b z p-value 

Skewness 11.96683 149.58536 1.84E-10 

Kurtosis 52.12194 1.821659 6.85E-02 

Note: b = Mardia’s coefficient for skewness and kurtosis.  
 

An initial assessment was conducted using a smaller 

number of complete bootstrapping with subsample sizes of 

500, 1000 and 3000 with parallel processing. A large 

subsample size of 5000 was used during bootstrapping for 

final result preparation. The findings (Table 8) indicate the 

null hypothesis has failed to be rejected; hence, discriminant 

validity has been established, CI-UL < 0.9. 

 

Table 8. Discriminant validity-HTMT 

Relationship Original Sample (O) Sample Mean (M) CI LL 5.00% CI UL 95.00% 

Belief  Confidence 0.466 0.470 0.353 0.592 

Confidence  Knowledge 0.402 0.397 0.216 0.576 

Interest  Confidence 0.284 0.292 0.129 0.454 

Mathematics  Knowledge 0.426 0.432 0.261 0.600 

Motivation  Confidence 0.230 0.216 0.067 0.362 

Note: a) Complete bootstrapping performed. b) Set at 5000 subsamples. c) Parallel processing. d) H0 holds since all CI-UL < 0.9 [62]. 

 

Table 9. Structural model-variance inflated factor 

Items Belief Confidence Interest Knowledge Mathematics Motivation 

Belief  1.618     

Confidence    1.807   

Interest  2.066     

Knowledge       

Mathematics    1.807   

Motivation  2.310     

Note: All VIF values are within the prescribed tolerance ranges (VIF ≥ 5, [64]; VIF ≥ 3, [65]). 
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B. Structural Model 

The structural model examines horizontal collinearity. 

Therefore, assessing the structural model results enables 

determining the model’s capability to predict one or more 

target LV/s (construct/s). The study presents the structural 

model in six parts: collinearity issues, path coefficients, the 

significance of the relationships, level of R2, effect size (f2) 

and predictive relevance (Q2). 

1) Collinearity issues   

Collinearity arises when two indicators are highly 

correlated. Collinearity among LVs is assessed through the 

Variance Inflated Factor (VIF). A VIF value of greater than 

or equal to five (VIF ≥ 5) indicates a potential collinearity 

problem [64]. Meanwhile, a more stringent guideline 

purported by Diamantopoulos and Siguaw [65] is that a VIF 

≥ 3 indicates potential collinearity problems. Table 9 shows 

the evaluation of the VIF values, where each set of predictor 

LV is assessed separately for each subpart of the structural 

model. All VIFs are within the prescribed guidelines [64, 65], 

meaning there is no strong indication of collinearity issues. 

2) Path coefficients 

Path coefficients are the coefficients linking LVs in the 

structural model. The coefficient represents the hypothesised 

relationship of the relationship strength, hence the 

significance of the relevance of the relationships. 

Accordingly, the primary way to compare the strength of 

relationships is to examine the path coefficients. The path 

coefficients indicate to what extent an independent variable 

affects a dependent variable (through bootstrapping, the 

significance of the relationships is examined- observed in the 

next subheading). Path coefficients vary between −1 and +1; 

coefficient values closer to +1 indicate a robust positive 

relationship (and vice versa for negative values). Higher 

values denote more robust (predictive) relationships between 

the LVs. When the value is closer to 0, it signifies a weak 

relationship and is not statistically significant. 

There are three types of effects. Firstly, a direct effect is 

a relationship linking two LVs with a single arrow between 

the two. Secondly, an indirect effect is a sequence of 

relationships with at least one intervening LV involved. Third, 

the total effect is the sum of the direct and indirect effects 

linking two LVs. It is important to note that the conceptual 

model created and tested in this study (Fig. 1) is designed 

based on a direct effect relationship. 

The path coefficient values (Table 10) do not exhibit high 

values but indicate all positive relationships between IVs and 

DVs. Fig. 3 visually depicts this, showing that all positive 

relationships exist. 

3) Significance of the relationships-t values and p 

values 

The significance of the relationships is further assessed 

through bootstrapping (i.e., examining whether the effect of 

a specific IV on a certain DV is significant). The 

bootstrapping analysis evaluates the direct effects of all the 

hypothesised relationships represented by statistical testing of 

the hypothesis (Table 2). Determining whether a coefficient 

is significant depends on its Standard Error (SE) obtained by 

bootstrapping that computes the empirical t-values and p-

values for all structural paths. When an empirical t-value is 

larger than the critical value, it can be concluded that the 

coefficient is statistically significant at a certain error 

probability. Commonly used critical values for a two-tailed 

test are 1.65 at a significant level of 10%, 1.96 at a significant 

level of 5% and 2.58 at a significant level of 1%. The 

confidence level is equivalent to 1; in humanities, it is typical 

to adopt a significance level of 0.05, which corresponds to a 

confidence level of 95%. 

 

Table 10. Path coefficients 

Items Belief Confidence Interest Knowledge Mathematics Motivation 

Belief  0.466     

Confidence    0.402   
Interest  0.284     

Knowledge       

Mathematics    0.426   
Motivation  0.230     

 

  
Fig. 3. Visual representation of path coefficients. 

 

If t0.05 > 1.96 (for a 2-tailed test, critical value = 1.96), the hypothesis is supported [66]. Hair et al. [35] suggest 
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assessing beta values (β) and the corresponding t values 

through a bootstrapping procedure with a resample of 5000. 

The individual path coefficient is interpreted as the 

standardised coefficient in an ordinary least squares (OLS) 

regression. A one-unit change of an exogenous construct 

changes the endogenous construct by the size of the path 

coefficient when everything else remains constant [64]. 

 

Table 11. Direct relationships for Hypothesis testing 

Hypothesis Relationship Std Beta Std Error t value p-value Decision 95%CI LL 95%CI UL 

H1 Belief  Confidence 0.470 0.073 6.352** 0.000  0.353 0.592 

H2 
Confidence  

Knowledge 
0.397 0.109 3.689** 0.000  0.216 0.576 

H3 
Interest  
Confidence 

0.292 0.100 2.836** 0.005  0.129 0.454 

H4 
Mathematics  

Knowledge 
0.432 0.104 4.103** 0.000  0.261 0.600 

H5 
Motivation  

Confidence 
0.216 0.089 2.578* 0.010  0.067 0.362 

Note: a) **p < 0.01, *p < 0.05; b)  means decision is supported; c) All relationships supported. 

 

The p-values are used to assess the significance levels. 

When assuming a significance level of 5%, the p-value must 

be smaller than 0.05 to conclude that the relationship under 

consideration is significant. It is noted that most p-values 

meet the condition when assuming a significance level of 1%, 

where the p-value is smaller than 0.01, which concludes that 

the relationship under consideration is significant not only at 

a 5% level but also at a 1% level (Table 11). Similar research 

found that tasks involving robots have improved students’ 

engagement, interest, attitude, and motivation [67–69]. 

4) Level of R2 

R square (R2) is the coefficient of determination, which 

measures the proportion of variance in a latent endogenous 

variable explained by the other exogenous expressed as a 

percentage [54]. Hence, R2 measures the model’s predictive 

accuracy, representing the amount of variance in the 

endogenous constructs explained by all exogenous constructs 

linked to it. R2 values range between 0 and 1, with higher 

values indicating higher levels of predictive accuracy. 

It is considered that values of R2 ≈ 0.25: weak, R2 ≈ 0.50: 

moderate, and R2 ≈ 0.75: substantial [64, 70]. Chin [54] 

articulates R2 values of 0.67, 0.33 and 0.19 as substantial, 

moderate and weak. The adjusted R2 values are interpreted 

similarly to the R2 square values, as the adjusted R2 controls 

for model complexity when comparing different model set-

ups [71, 72]. 
 

Table 12. R Square (R2) values 

 R Square R Square Adjusted Outcome 

Confidence 0.713 0.701 Substantial- Moderate 

Knowledge 0.571 0.559 Moderate- Substantial 

Note: R2 and R2 adjusted values for Confidence are substantial, and 

Knowledge is moderate- R2
 ≈ 0.19- 0.25: weak, R2

 ≈ 0.33- 0.50: moderate 

and R2
 ≈ 0.67- 0.75: substantial [54, 64, 70]. 

 

 
Fig. 4. R Square values (R2) and inner model depicting t values.  

(Note: a) LVs (constructs) show R square values and the inner model shows t values. b) Model result of bootstrapping subsample 5000.) 
 

The R2 values represent the amount of variance by the endogenous LVs (constructs) explained by all exogenous 
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LVs linked to it. As depicted in Table 12 and Fig. 4, the 

endogenous LV Confidence can be found to have a 

substantial to moderate outcome. Meanwhile, Knowledge can 

be expressed to have a moderate to substantial  

outcome [54, 64, 70]. Visual inspection of Fig. 4 shows that 

the endogenous LVs Mathematics and Confidence are 

Dependent Variables (DV) informed by the Independent 

Variables (IV). Note that while Confidence is regarded as 

endogenous, it is also a mediating variable that acts as a DV 

that informs the IV Knowledge. Further calculation of the 

effect strength (f²) for each IV allows the assessment of the 

extent to which the IV contributes to explaining the DV. 

5) Effect size (f2) 

The assessment of the effect size allows the observance of 

the effect of each exogenous LV on the endogenous LV. In 

doing so, the effect size assesses how strongly one exogenous 

LV contributes to explaining a certain endogenous LV in 

terms of R2. The effect size formula is as follows: 

 𝑓2 =
𝑅𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑

2 − 𝑅𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑
2

1− 𝑅𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑
2  

   

 

 

 
Table 13. Effect size (f2) 

Predictor Endogenous 
R-SQ 

Included 

R-SQ 

Excluded 

Effect 

size (f2) 
Outcome 

Belief Confidence 0.713 0.590 0.429 strong 
Confidence Knowledge 0.571 0.494 0.179 moderate 

Interest Confidence 0.713 0.675 0.132 weak 

Mathematics Knowledge 0.571 0.467 0.242 moderate 
Motivation Confidence 0.713 0.690 0.080 weak 

Note: a) All effect sizes are valid since no f2 ≤ 0.02. b) Effect size impact 

indicators are, according to Cohen [73], f2 values: 0.35 (large/strong), 0.15 

(medium/moderate), and 0.02 (small/weak). 

 

Similar findings by McGill [6] suggest that the factors of 

motivation and interest in computer programming through 

using robotics do not influence students’ overall motivation 

levels. Meanwhile, a study by Jaipal-Jamani and Angeli [74] 

found that the implementation of robotics intervention 

significantly improved a subject’s belief (moderate to high 

effect size), as they gained confidence in their capacity to 

complete the assignment successfully and believed they 

possessed the necessary skills to do so. 

6) Predictive relevance (Q2)    

In addition to evaluating the magnitude of the R2 values as 

a criterion of prediction accuracy, researchers also examine 

predictive relevance (Q2), also known as the Stone-Geisser Q2 

value [75, 76]. This measure is an indicator of the model’s 

predictive power or predictive relevance. The Q2 value is 

obtained through blindfolding procedures for a specified 

omission distance (D) with values between 5 and 10. Q2 

values larger than zero suggest that the model has predictive 

relevance for a certain endogenous LV [54, 70, 77]. As 

remarked by Garson [34], “values of Q2 greater than 0 means 

that the PLS-SEM model is predictive of the given 

endogenous variable under scrutiny”. In contrast, values of 0 

and below indicate a lack of predictive relevance. Cohen [73] 

prescribes 0.02 ≤ Q2 < 0.15: small effect size, 0.15 ≤ Q2 < 

0.35: medium effect size and Q2 ≥ 0.35: high effect size. 

Predictive relevance is assessed through the findings of the 

construct cross-validation redundancy, which addresses 

model fit [34]. 

Findings of the Q2 values (Table 14) indicate that 

endogenous LVs confidence and knowledge possess high 

predictive relevance due to Q2 > 0.35. Further, it suggests that 

the LVs that inform confidence and knowledge make a 

meaningful contribution to promoting predictive relevance 

and that the model is meaningful. Overall, the model depicts 

that belief in coding, interest in coding and motivation to code 

encourage an individual’s confidence to learn code. These 

factors significantly influence the student’s enthusiasm and 

self-awareness of their ability while learning how to code—

knowledge/outcome. Thus, it supports the findings from 

Mason and Rich [78] that frequent coding positively 

influences attitudes such as beliefs, interests and motivation.  
 

Table 14. Construct cross-validated redundancy 

Items SSO SSE Q² ( = 1-SSE/SSO) 

Belief 225.000 225.000  

Confidence 300.000 189.747 0.368 

Interest 300.000 300.000  

Knowledge 225.000 137.841 0.387 

Mathematics 150.000 150.000  

Motivation 225.000 225.000  

Note: a) Blindfolding omission distance D= 7. b) SSO represents the mean 

value prediction. c) SSE is the prediction error when using the model 

prediction. d) All Q2 > 0 showing model has predictive relevance [54, 70, 

77]. e) Predictive Relevance (Q2) of predictor exogenous latent variables as 

according to Henseler et al. [70], Q2 values: 0.35 (large), 0.15 (medium), and 

0.02 (small). f) All Q2 ≥ 0.35 high effect. 

V. CONCLUSION 

This study’s objective was to investigate the factors 

contributing to one’s knowledge of programming through 

using robotics by examining the influence of confidence, 

interest, motivation, belief, Mathematics, and knowledge. A 

survey to gauge 75 participants’ afterthoughts enabled the 

testing of a conceptualised model using PLS-SEM analysis. 

The model met all respective criteria within the measurement 

and structural models, thereby deeming the model valid and 

successful in explaining students’ perceptions of robotics 

when learning to program. All hypotheses were supported 

since p < 0.05 confirms that of the literature that relationships 

H1, H2, H3, H4 and H5 play a crucial role in learning 

computer programming. In addition, it can be inferred to 

some extent that using physical manipulatives such as 

robotics has a positive effect on learning text-based computer 

programming. Learning to code was highly engaging, which 

gave meaning to the code, in contrast to viewing the 

execution of the code on the screen in a 2D environment. This 

study paves the way for further research with larger datasets 

and differing contexts that may investigate other possible 
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R2
included and R2

excluded are the R2 values of the endogenous 

latent variable (LV) when a selected exogenous LV is 

included or excluded from the model. The change in the R2 

values is calculated (Table 13) by estimating the PLS path 

model twice, that is, once with the exogenous LV included 

(yielding R2
included) and the second time with the exogenous 

LV excluded (yielding R2
excluded). Therefore, the effect size (f2) 

evaluation determines whether the omitted LV has a 

substantive impact on the endogenous construct, also known 

as the effect size of the exogenous LV on the model. The 

assessment of the effect size follows Cohen’s guidelines, 

which are 0.02, 0.15 and 0.35 for small, medium and large 

effects, respectively [73]. Effect size values less than 0.02 

indicate that there is no effect.



  

contributing factors that influence the learning of computer 

programming. The outcomes of this study have the potential 

to significantly contribute to the understanding of 

the adoption and utilisation of physical manipulatives in 

learning text-based computer programming in South Africa 

and similar contexts globally. 
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