

Abstract—Web testing is the name given to software testing

that focuses on web applications. Complete testing of a web

based system before going live can help address several issues.

Manually testing is a time consuming practice and is difficult to

repeat but can’t be overlooked. Each time a software does not

perform to specifications; the program will record and report

the exact command that caused the problem. Once the problem

is identified and the bug is fixed, one can execute the very same

set of commands to verify the success. There are a number of

commercial and open source tools available for assisting with

the development of test automation. In this paper, automated

test tools named WATIR (Web Application Testing in Ruby)

and Selenium are proposed to support the automated test

scenario for web based applications.

Index Terms—WATIR, ruby, selenium, selenium – IDE, RC,

grid, selenium commands.

I. INTRODUCTION

In software testing, test automation is the use of special

software (separate from the software being tested) to control

the execution of tests and the comparison of actual outcomes

to predicted outcomes. Test automation can automate some

repetitive but necessary tasks in a formalized testing process

already in place, or add additional testing that would be

difficult to perform manually [1].

With the development of internet technology, Web

application becomes more and more complex and the scale of

it changes more and more great. The quality and reliability of

it get much more attentions. The Web application programs

testing, especially the regression testing is much more

difficult than the traditional [2], [3]. Web developers tend to

build "beautiful" pages but do not care about accessibility. In

Italy where Microsoft Internet Explorer(IE) is used by the

vast majority of the common people webmasters tend to

program so that the pages are viewed only by this

browser(IE), ignoring that in other browsers their pages look

badly, or (in some cases) some features are not showed [4].

Consequently research is required to help focussing on

Browser compatibility for effectively debugging and testing

web applications. Therefore it becomes important to carry

out research by providing tools and mechanisms that would

help towards Browser based testing. This paper intends to

give a contribution in this direction by proposing browser

based testing tools named WATIR and Selenium.

Manuscript received October 19, 2013; revised December 19, 2013.

N. Gogna is with the Australian Computer Society (ACS) Australia, India

(e-mail: peaceindia86@yahoo.in).

II. WATIR (4.0)

Watir (Web Application Testing in Ruby, pronounced

water), is an open-source (BSD) family of Ruby libraries for

automating web browsers as specified in Table I.

It drives Internet Explorer, Firefox, Chrome, Opera and

Safari, and is available as a RubyGems gem. Watir was

primarily developed by Bret Pettichord and Paul Rogers.

Watir is an open-source (BSD) library for automating web

browsers. It allows writing tests that are easy to read and

maintain in a simple and flexible manner.

Like other programming languages, Ruby gives the power

to connect to databases, read data files and spreadsheets,

export XML, and structure the code as reusable libraries.

Unlike other programming languages, Ruby is concise and

often a joy to read [5].

TABLE I: WATIR BASICS

Developer(s)

Bret Pettichord, Charley

Baker, Angrez Singh

Stable release

4.0 / September 30, 2012

Development Status Active

Written in

 Ruby (Programming

Language)

Operating system

Cross– platform

Type

Software testing

framework for web

applications

License BSD license

A. Functionality

Watir makes use of the fact that Ruby has built in OLE

capabilities. As such it is possible to drive the Internet

Explorer programmatically. Watir operates differently than

HTTP based test tools, which operate by simulating a

browser. Instead Watir directly drives the browser through

the Object Linking and Embedding protocol, which is

implemented over the Component Object Model (COM)

architecture.

The COM permits interprocess communication (such as

between Ruby and Internet Explorer) and dynamic object

creation and manipulation (which is what the Ruby program

does to the Internet Explorer).

Microsoft calls this OLE automation, and calls the

manipulating program an automation controller. Technically,

the Internet Explorer process is the server and serves the

automation objects, exposing their methods; while the Ruby

Study of Browser Based Automated Test Tools WATIR and

Selenium

Nisha Gogna

International Journal of Information and Education Technology, Vol. 4, No. 4, August 2014

336DOI: 10.7763/IJIET.2014.V4.425

program then becomes the client which manipulates the

automation objects [5].

B. Ruby

Ruby is a dynamic, reflective, general purpose

object-oriented programming language that combines syntax

inspired by Perl with Smalltalk-like features. Ruby originated

in Japan during the mid-1990s and was first developed and

designed by Yukihiro”Matz”. It was influenced primarily by

Perl, Smalltalk, Eiffel and Lisp.

As given in Table II Ruby supports multiple programming

paradigms, including functional, object oriented, imperative

and reflective. It also has a dynamic type system and

automatic memory management.

The standard 1.8.7 implementation is written in C, as a

single-pass interpreted language. There is currently no

specification of the Ruby language, so the original

implementation is considered to be the de facto reference. As

of 2010, there are a number of complete or upcoming

alternative implementations of the Ruby language, including

YARV, JRuby, Rubinius, IronRuby, MacRuby, and

HotRuby, each of which takes a different approach, with

IronRuby, JRuby and MacRuby providing just-in-time

compilation and MacRuby also providing ahead-of-time

compilation [6].

TABLE II: RUBY

Paradigm multi-paradigm

Appeared in 1995

Developer Yukihiro Matsumoto, et al.

Stable release 2.0.0-p247 (June 27, 2013)

Typing discipline duck, dynamic, strong

Influenced by Smalltalk, Perl, Lisp,

Scheme, Python, CLU,

Eiffel, Ada, Dylan

File extensions .rb, .rbw

C. Examples

Including Watir gem to drive Internet Explorer on Windows

require 'watir'

Including Watir-WebDriver gem to drive Firefox/Chrome on

Windows/Mac/Linux

require 'watir-webdriver'

Starting a new browser & and going to the site

 browser = Watir::Browser.new

 browser.goto 'http://bit.ly/watir-example'

Setting a text field

Text Field

browser.text_field (: name => 'entry.0.single').set 'Watir'

Setting and clearing a radio button

Radio Buttons

browser.radio (: value => 'Watir').set

 browser.radio (: value => 'Watir').clear

Checkboxes

browser.checkbox (: value => 'Ruby').set

 browser.checkbox (: value => 'Python').set

 browser.checkbox (: value => 'Python').clear

Clicking a button

Button

browser.button (: name => 'submit').click

Checking for text in a page

puts browser.text.include? 'Your response has been

recorded.'

Checking the title of a page

puts browser. Title == 'Thanks!'

III. SELENIUM

Selenium is a robust set of tools that supports rapid

development of test automation for web-based applications.

TABLE III: SELENIUM BASICS

 Stable release 2.33 / May 22, 2013

Development Status Active

Written in Java(programming language)

Operating system Cross platform

Type Software testing framework for

web applications

License Apache license 2.0

Website seleniumhq.org

TABLE IV: BROWSER COMPATIBILITY

Supported

Operating system

Supported

Languages

Supported

Browsers

Windows C# Firefox 3

Linux Java Firefox

Macintosh Ruby IE 8

 Groovy IE 7

 Python Safari 3

 PHP Safari 2

 Perl Opera 9

 Opera 8

 Others…

Selenium provides a rich set of testing functions

specifically geared to the needs of testing of a web

application. These operations are highly flexible, allowing

many options for locating UI elements and comparing

expected test results against actual application behavior. One

International Journal of Information and Education Technology, Vol. 4, No. 4, August 2014

337

of Selenium’s key features is the support for executing one’s

tests on multiple browser platforms [7]. Basics of Selenium

are shown in Table III.

A. Supported Browsers

In Selenium 2.0, the supported browsers vary depending

on whether we are using Selenium-WebDriver or

Selenium-RC as shown in Table IV [8].

B. Selenium Components

Selenium is composed of three major tools. Each one has a

specific role in aiding the development of web application

test automation.

Fig. 1. Selenium IDE.

1) Selenium-IDE

Selenium-IDE is the Integrated Development Environment

for building Selenium test cases. It operates as a Firefox

add-on and provides an easy-to-use interface for developing

and running individual test cases or entire test suites.

Selenium-IDE has a recording feature, which will keep

account of user actions as they are performed and store them

as a reusable script to play back (Fig. 1). It also has a context

menu (right-click) integrated with the Firefox browser,

which allows the user to pick from a list of assertions and

verifications for the selected location. Selenium-IDE also

offers full editing of test cases for more precision and control.

Although Selenium-IDE is a Firefox only add-on, tests

created in it can also be run against other browsers by using

Selenium-RC and specifying the name of the test suite on the

command line.

2) Selenium-RC (remote control)

Selenium-RC allows the test automation developer to use a

programming language for maximum flexibility and

extensibility in developing test logic. For instance, if the

application under test returns a result set, and if the

automated test program needs to run tests on each element in

the result set, the programming language’s iteration support

can be used to iterate through the result set, calling Selenium

commands to run tests on each item as illustrated in Fig. 2.

Fig. 2. Architecture of selenium-RC.

3) Selenium-grid

Selenium-Grid allows the Selenium-RC solution to scale

for large test suites or test suites that must be run in multiple

environments. With Selenium-Grid, multiple instances of

Selenium-RC are running on various operating system and

browser configurations. Each of these when launching

register with a hub. When tests are sent to the hub they are

then redirected to an available Selenium-RC, which will

launch the browser and run the test. This allows for running

tests in parallel, with the entire test suite theoretically taking

only as long to run as the longest individual test.

C. Selenium Commands

Selenium provides a rich set of commands for fully testing

a web-app in virtually any way. The command set is often

called selenese. These commands essentially create a testing

language. In selenese, one can test the existence of UI

elements based on their HTML tags, test for specific content,

test for broken links, input fields, selection list options,

submitting forms, and table data among other things. In

addition Selenium commands support testing of window size,

mouse position, alerts, Ajax functionality, pop-up windows,

event handling, and many other web-application features [7].

A command is what tells Selenium what to do. Selenium

commands come in three “flavors”: Actions, Accessors and

Assertions.

 Actions are commands that generally manipulate the state

of the application. They do things like “click this link” and

“select that option”. If an Action fails, or has an error, the

execution of the current test is stopped.

 Accessors examine the state of the application and store the

results in variables, e.g. “storeTitle”.

 Assertions are like Accessors, but they verify that the state

of the application conforms to what is expected. Examples

include “make sure the page title is X” and “verify that this

checkbox is checked”.

D. Script Syntax

Selenium commands are simple; they consist of the

command and two parameters as given below. For example:

Verify text //div//a[2] login

International Journal of Information and Education Technology, Vol. 4, No. 4, August 2014

338

The parameters are not always required; it depends on the

command. In some cases both are required, in others one

parameter is required, and in still others the command may

take no parameters at all.

Parameters vary, however they are typically

 a locator for identifying a UI element within a page

 a text pattern for verifying or asserting expected page

content

 a text pattern or a selenium variable for entering text in an

input field or for selecting an option from an option list

F. Commonly Used Selenium Commands

 open: opens a page using a URL.

 click/clickAndWait: performs a click operation, and

optionally waits for a new page to load.

 verifyTitle/assertTitle: verifies an expected page title.

 verifyTextPresent: verifies expected text is somewhere

on the page.

 verifyElementPresent: verifies an expected UI element,

as defined by its HTML tag, is present on the page.

 verifyText: verifies expected text and it’s corresponding

HTML tag are present on the page.

 verifyTable: verifies a table’s expected contents.

 waitForPageToLoad: pauses execution until an expected

new page loads. Called automatically when clickAndWait

is used.

 waitForElementPresent: pauses execution until an

expected UI element, as defined by its HTML tag, is

present on the page.

IV. CONCLUSION

This paper presented the most basic features of Browser

based automated test tools Watir and Selenium for a web

application.

In all one have to learn Ruby (unless you choose Watij or

Watin) first for Watir and every browser requires a different

library for running test cases while Selenium has its own IDE

and can record and playback tests. But for Selenium one has

to learn a vendorscript first that is Selenese unless tests have

to be written in any other language and has trouble recording

IFrames, Frames and popup windows while Frames and

pop-ups are accessible using API in WATIR.

Also, selenium has Deep learning curve to switch from

Selenium IDE to Selenium RC as compared to Watir. To

tackle this problem, future work is required to be done to

cover the limitations of one tool with respect to another.

REFERENCES

[1] A. Kolawa, D. Huizinga. (2007). Automated Defect Prevention: Best

Practices in Software Management. IEEE Computer Society Press.

ISBN 0-470-04212-5. [Online]. pp. 74. Available:

http://www.en.wikipedia.org/wiki/Test automation.

[2] F. Coda, C. Ghezzi, G. Vigna et al., “Towards a Software Engineering

Approach to Web Site Development,” in Proc. the Ninth International

Workshop on Software Specification and Design, Ise-Shirna Japan:

IEEE Computer Society Press, April 16-18, 1998, pp. 8-17.

[3] J. T. Yang, J. L. Huang, F. J. Wang, and W. C. Chu, “An

Object-Oriented Architecture Supporting Web Application Testing,” in

Proc. IEEE 23rd Annual International Computer Software and

Application Conference (COMPSAC2000), Phoenix Arizona USA:

IEEE Computer Society Press, Oct 2000, pp. 122-127.

[4] M. Kirchner, “A Benchmark for Testing the Evaluation Tools for Web

Pages Accessibility,” in Proc. the Fifth IEEE International Workshop

on Web Site Evolution (WSE’03), 2003.

[5] Watir home page. Watir web site. (11 October 2012). [Online].

Available: http://www.Watir - Wikipedia, the free encyclopedia.htm

[6] About Ruby. Ruby-lang.org. (Nov. 29, 2001). [Online]. Available

http://www.Ruby (programming language)-Wikipedia, the free

encyclopedia.htm.

[7] Selenium Documentation Release 1.0, Selenium Project. (February 24,

2010). [Online]. pp. 3-164. Available:

http://www.seleniumhq.orgs/docs.

International Journal of Information and Education Technology, Vol. 4, No. 4, August 2014

339

[8] Selenium Tutorial for Beginners (c), Appvance, as PushToTest Inc..

(2012). Frank Cohen. [Online]. Available:

http://www.SeleniumTutorial for Beginners - Tutorial 4.htm

Nisha Gogna is currently an associate of Australian

Computer Society (ACS). She was born in India on 24

April 1987. She received her bachelor of technology –

with Distinction (information technology) Punjab

Technical University, Punjab, India (2004-2008). She

obtained her master of engineering (information

Technology) Panjab University, Chandigarh, India

(2009-2011). She has completed her 6 months of

research on the topic, “Comparative Study of Browser

Based Open Source Testing Tools Watir And Wet”.

Being an assistant professor she holds an adequate experience in the field

of Engineering alongside the publication of following research papers: 1)

Study of Browser Based Automated Test Tools Watir and WET,”

International Journal of Information Sciences and Application, ISSN

0974-2255 vol. 2, no. 2 (2010), pp. 289-293. 2) “Advancing Towards

Automated Testing through Effective Manual Testing,” Engineering

Sciences, 5th Chandigarh Science Congress, CHASCON 2011. 3)

“Comparative Study Of Browser Based Open Source Testing Tools Watir

And Wet,” International Journal on Computer Science and Engineering

(IJCSE11-03-05-128), vol. 3 no. 5 May 2011, ISSN : 0975-3397, pp.

1910-1923.

Ms. Nisha Gogna is a current Associate of Australian Computer Society

(ACS), Australia.

Author’s formal

photo

E. Test Suites

A test suite is a collection of tests. Often one will run all the

tests in a test suite as one continuous batch-job. When using

Selenium-IDE, test suites also can be defined using a simple

HTML file. The syntax again is simple. An HTML table

defines a list of tests where each row defines the filesystem

path to each test.

An example tells it all.

<html>

<head>

<title>Test Suite Function Tests - Priority 1</title>

</head>

<body>

<table>

<tr><td>Suite Of Tests</td></tr>

<tr><td>Login</td></tr>

<tr><td>Test Searching for

Values</td></tr>

<tr><td>Test

Save</td></tr>

</table>

</body>

</html>

A file similar to this would allow running the tests all at

once, one after another, from the Selenium-IDE.

