

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

179

Abstract—Integrating applications is not simple. The code,

which is often distributed between client and server, is highly

error-prone and complicated to retain. In this paper, we

introduce a generative environment for abstract services and

non functional characteristics. The mediation code is necessary

to make applications interoperate. This executes all the

operations that are necessary for true communication between

two applications. The paper describes the functions required

for the service integration towards security orchestration.

Index Terms—Orchestration, service integration, security.

I. INTRODUCTION

The software system plays very important role more and

more into our company and many views of our life. The

new services help become us and used becomes in masses

[1]. These new services are interoperating with the

applications in general indebted. These services integrate

around the business data and rational firm processes arrange

themselves. For example, in telecommunications, the new

services on the inherited applications are required for

network direction, invoicing systems and managing

customer direction, etc.

The service composition is complex for several reasons.

First, there are a lot of technologies to describe, the edition

and to compose the services. The Web Services are related

to a lot of norms in evolution. Nowadays, the service

composition cannot be based on the service specifications

only. Syntactic Compatibility does not guarantee semantic

compatibility. In practice, the service composition is based

on the hard encoded rules that allow attaining the foreseen

results. A service composition has to attain a series of pre-

defined non functional qualities, as the security for example,

which demands the production of complicated code.
This code is often distributed between client/server and

difficult to maintain. In this parchment, we present a tool

that supports Orchestration and security. This tool furnishes

an extensible solution to express separately manage flows of

non functional property. The Orchestrator Model for System

Security (OSS) is designed for service integration with

security orchestration.

The parchment is organized as it follows. First, somebasic

conditions for integration and support. Section III is

proposal based on an approach models motivated. The ePO

Manuscript received March 4, 2012; revised April 20, 2012.

Aradhana Goutam is with the School of Computer sc. and Information

Technology, Devi Ahilya University, Indore, India (e-mail:

aradhana.pande@gmail.com).

Raj Kamal and Maya Ingle are with School of Computer Science and

Information Technology, Devi Ahilya University, Indore, India.

and OSS are compared in Section IV, Section V presents the

orchestration activities and Service Integration is presented

in Section V. Section VI concludes this parchment.

II. CLASSIFICATION OF SECURITY SERVICES IN WEB

SERVICES

Service integration depends on public services. Service

selection is according to user requirement, and concrete run-

time behavior of services. Security makes service

integration harder. The run-time permissions depend on a

suitable abstraction of the history of all the pieces of code

(possibly partially) executed so far. This approach has been

receiving major attention, at both levels of foundations [17,

18, and 19].

The security activities i.e. reading and writing files,

service invocation, are called events. Sequences of events

are called histories. The security classification is on

following aspects:

Stateless / Stateful Services:

A service which does not keep histories is stateless

service. A service which keeps the history is stateful service

[20].

Local / Global Histories:

Locally generated events are known as local histories.

Global history may cross over multiple services [20].

Dependent / Independent Threads:

An independent thread keeps separate history, while

dependent threads may share part of their histories.

Therefore, dependent threads may influence each other

when using the same service, while independent threads

cannot. [20]

Service is an interpreted as functional type, of the form

S1--RH--> S2. This represents the relationship between two

services i.e.S1evaluates to an object of type S2. The

annotation RH is a history expression. The RH directs the

selection of services that respect the requested properties

about security or other non-functional aspects.

Service interfaces can implement using call-by-policy

primitive. For instance, service integration can be

mechanically inferred through a type and effect system. A

policy P is a integration of services. To select a service

matching a given policy P, and with functional type S1 →

S2, a client request for Req (S1 --P-->2). The call-by-Policy

ensures the service selection, with respect to policy P.

A call-by-policy is a standard service call, and it is

formalized as a mapping from requests to services.

III. NON-FUNCTIONAL PROPERTIES

Integrating applications descend not simply to the simple

Service Integration towards Security Orchestration

Aradhana Goutam, Raj Kamal, and Maya Ingle

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

180

Internal orchestration

Main orchestration

Service 2

Service 3

Service 4

Service 5

 Orchestrator of

Physical services

M
E

D
IA

T
IO

N

EXECUTION PLATFORM

Security

Policy

Security Policy

Security Policy

Service 1

calls of service. The mediation code is necessary to make

applications interoperate.

Communication is primary goal of mediation to enable

the applications that use the different communication

protocols to interoperate. This is executed by means of the

protocol transformation as in a network bridge [5].

 Syntactic alliance function is to align data formats.

This can be done between every application or by an

intermediary format. [5].

 Semantic alliance function is to align semantic data.

This is required because many of the applications have

major differences in the definitions of function and of

behaviors [5].

 Non functional property is to guarantee the certain

property of quality in the application exchanges, for

example the security or availability [5].

 Storage is to take annotations of all the exchanges

between the applications. The mediation layer can’t

provide support for service call, responses and the data

[5].

 Interception is to collect system check data that verify

the foreseen quality of service [5].

 Business logic codes: The mediation layer can be used

to insert logic code, as an access to a database for

instances. This approach is useful but its usage is not

recommended [5].

The mediation layer can be used through an EAI

(Enterprise Application Integration). EAI is an integration

framework composed of different technologies and services.

This is a middleware to enable integration of systems and

applications across the enterprise [1]. Web services aim for

the solutions of lighter integration and established the

definition of Enterprise Service Buses, or ESB. ESB [2]

software is used for design and implementation. It is also

used for interaction and communication between mutually

interacting software applications in SOA. The Services of

client and Web components requires mediation for

communication. These components execute the previously

presented operations (the protocol transformation, Syntactic

alliance and semantic, the insert of non functional code,

etc.). It provides a unique interface for all the different

elements (i.e. the applications) implied in a communication.

This reduced the number of point to point connections. Fig.

1 shows the service integration through ESB.

Fig. 1.

Service integration through ESB.

IV.

PROPOSAL

Generative approach for OSS is based on two drivers:

Abstraction and Separation. OSS model having an

abstracted service defined in the following terms:



The functional interfaces specify the functional

characteristics of services.



The property, identified by their names and types.

Abstracts service can be composed and executed with a

physical service. A composite abstract service is described

as a simple abstracted service and executed by a series of

physical services.

A physical service is an implementation: it is furnished

with the code (the files). It is illustrated with interfaces and

property. The interfaces can be the Java interface, IDL-

affection interfaces, etc.

Fig.

2

shows the service integration in OSS. It is clear

from the figure that single security policy is composed of

different integrated service. These integrated services are

the sub-set of the security policy. These security policies are

the sub-set of the physical services.

Fig. 2. Service integration in OSS.

The mediation layer controls the communication between the security policies and orchestrator. There are two layered

Application

Web Service

Execution Platform

Web Service

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

181

orchestration in the system. Internal orchestration is at

security policy i.e. each security policy orchestrate different

service according to the service call either parallel or

sequential.

 Main orchestration is physical service orchestrator/

security policy orchestrator i.e. different security

policies get selected according to security aspect.

V. ORCHESTRATOR MODEL FOR SYSTEM SECURITY (OSS)

AND MCAFEE EPOLICY ORCHESTRATOR

ePO is the security management software for systems,

networks, data, and compliance solutions. The following are

the flaws in ePO:

 It works for the large business organizations only.

 Identity Management is not integrated.

 It’s very expensive and hard to manage for small scale

organization.

 Feasibility of adding several non-functional properties

is not possible.

The above mentioned flaws are improved in Orchestrator

model for system security (OSS). The following are the

improvements or addition of new facilities in OSS:

 The feasibility of addition of several non functional

properties.

 The principle of the separation is used to simplify the

system. Advantage of this separation is that the models

can be easily maintained.

 The dynamic selection of services allows weak

coupling of property.

The flaws ePO are improved in proposed OSS. Service

Integration with security orchestration is taken into account

in OSS. It makes easy service selection, dynamic selection

of security services and two level orchestrations are possible.

The service integration with security orchestration is

introduced in proposed OSS. This reduces the loading time

and selection time because of the separation concept.

Merits of Service Integration with OSS:

 Service selection is easy.

 Dynamic selection of security services.

 Two level orchestrations are possible.

 Separation of module makes easy composition.

Demerits of Service Integration with OSS:

 Less scaling options, harder to incrementally grow the

platform as traffic or users increase.

 The CPU requirements reach peak levels

simultaneously, performance, and stability may be

adversely affected.

 IP multicast design require, because service selection

for multi-user affect CPU load.

The service integration with security orchestration

reduces the loading time and selection time because of the

separation concept.

VI. ORCHESTRATION ACTIVITIES

Security orchestration enables the services in trusted area.

Fig. 3 shows an OSS framework [10]. Functioning of the

OSS is as follows: All services are called through a gateway

as per security policy. A request message (for example 3 for

authentication) is given to an Orchestrator. The Orchestrator

invokes the security services in a response message as per

the request 3). An exception is thrown to the Orchestrator, if

a service check fails [YM05]. The gateway and Orchestrator

function as a single entity.

OSS contains the filters and security services. Example of

security services are Authentication, Validation and

Authorization. Consider following example. It explains the

working principle of OSS. User can access the available

service only if request passes through the OSS.

User sends request to access service 2 (Step 0). This will

invoke public registry of service 2. A message will be

generated. This message is passed to the Orchestrator (Step

1). The security- services are executed either in parallel or

sequential.

Once a process completes through the steps 2, 3, and 4, 5,

6, 7, 8, 9 the Orchestrator will respond to user through step

10. If any intermediate step fails then an exception is thrown.

The Orchestrator will stop the processing. It will send a

service deny message to the user.

Table I lists Orchestrator activities as a function of time.

The Orchestrator selects the security activities at different

instants either parallel or sequential. Instances are assumed

as T1, T2, T3….and are such that T1<T2< T3…. .

Fig. 3. Basic OSS framework.

1

10

0

Security

policy
User

Security
service

Orchestrator
Gateway

Authorization Validation

Service 1 Service 2 Service N

3

4

5

6

7

9

2

Authentication

8

Filters and

Security

Services

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

182

VII. INTEGRATION OF SERVICES

The integration of security service and Orchestrator

models is required. A model for execution is as follows:

The selection of the services takes into consideration in

model for execution. An Execution model maintains the

state of the execution environment. Application simplifies

an intranet management for security services using OSS.

The model for execution allows relation between service

properties and service dynamism.

The Execution model is like a directory. It understands

the information of available physical services. It also takes

into account historic invocations of the services. The

content of these directories is as follows:

TABLE I: ACTIVITY TIME FOR SECURITY SERVICES ORCHESTRATOR

Activity Orchestration Sub-Activity Sub-Activity Orchestration Start Instance Finish Instance

Authentication

Parallel

Username Parallel T1 T2

Signature Parallel T1 T3

Sequential

X.509 Certificate Sequential T3+∆T3 T4

Encryption Sequential T4+∆T4 T5

Integrity

Parallel
Signature

Parallel T5 T6

Sequential

X.509 Certificate Sequential T6+∆T6 T7

Encryption Sequential T7+∆T7 T8

Confidentiality Sequential Confidentiality Sequential T8 T9

Audit (Logging) Sequential

File Parallel T9 T10

Database Parallel
T9 T11

Service Element Selection Sequential/ Parallel ----------- -------

T11’,

T11’’,

T11’’’

T12,

T12’,

T12’’

Execution Sequential/ Parallel ---------- ----------- T13 T14

Approach in the execution phase is as follows:

1) A selection mechanism allows choosing most

appropriate service.

2) A physical service modelling is done according to the

type of service. The model takes into account the

services functionality and security characteristics.

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

183

3) Code generation process.

VIII. CONCLUSION

Proposed OSS model supports the addition of the security

in the service composition during SOC. Service Integration

allows two level orchestration i.e. internal and external

orchestration. Service selection is easy. Dynamic selection

of security services is possible. Separation of module makes

easy composition. Security service Orchestration becomes

flexible.

OSS tool easily integrates itself in the system of

information of a business. It suffices to adapt the access to

the system of identity management according to the used

technology. It is easy to add any number of non-functional

properties.

An application of the OSS is described. The results of an

experiment performed are described. A chain of data from a

data acquisition system is used in the experiment. The

experiment shows implementation of security aspect using

the OSS.

Inter-sector and inter-enterprise working will be more

important in future. Because, the mutual technologies are

increasing day-by day and offer low-cost, efficient means of

coordination. OSS can be added more flexibility and made

easily extendible for inter-enterprise.

REFERENCES

[1] Wikipedia. [Online]. Available: http://En.Wikipedia.Org.

[2] IBM. Web Services Atomic Transaction (WS-AtomicTransaction).

(November 2004). [Online]. Available:

http://www.download.boulder.ibm.com/ibmdl/pub/software/dw/librar

y/ws-atomictransaction 200411.pdf.

[3] D. A. Chappell, Enterprise Service Bus, O’Reilly Media Inc., 2004.

[4] E. Pulier and H. Taylor, “Understanding Enterprise SOA,” Manning,

2006.

[5] S. Chollet and P. Lalanda, “An Extensible Abstract Service

Orchestration Framework,” in Proc. the 2009 IEEE International

Conference on Web Services, pp. 831-838.

[6] M. P. Papazoglou and D. Georgakopoulos, “Service-Oriented

computing: Introduction,” Commununications of the ACM, vol. 46, no.

10, pp. 24–28, October 2003.

[7] G. Pedraza and J. Estublier. “An Extensible Services Orchestration

Framework through Concern Composition,” International Workshop

on Non-functional System Properties in Domain Specific Modeling

Languages, 2008.

[8] Apache. (2006). Web Services Security for Java. [Online]. Available:

http://www.ws.apache.org/wss4j/.

[9] M. Colombo, E. D. Nitto, and M. Mauri, “SCENE: A Service

Composition Execution Environment Supporting Dynamic Changes

Disciplined Through Rules,” in Proc. International Conference on

Service Oriented Computing, pp. 191–202, 2006.

[10] C. Blundo, E. De Cristofaro, C. Galdi, and G. Persiano, “Validating

Orchestration of Web Services with BPEL and Aggregate

Signatures,” in Proc. the 2008 Sixth European Conference on Web

Services, pp. 205-214.

[11] M. Bartoletti, P. Degano, and G. L. Ferrari, “Types and Effects for

Secure Service Orchestration,” in Proc. the 19th IEEE workshop on

Computer Security Foundations, USA: IEEE Computer Society

Washington, DC, 2006.

[12] M. Bartoletti, P. Degano, and G. L. Ferrari, “Types and Effects for

Secure Service Orchestration,” in Proc. the 19th IEEE workshop on

Computer Security Foundations, USA: IEEE Computer Society

Washington, DC, 2006.

[13] S. Chollet and P. Lalanda, “An Extensible Abstract Service

Orchestration Framework,” in Proc. the 2009 IEEE International

Conference on Web Services, pp. 831-838.

[14] M. D. D. Fabro, J. Bézivin, and P. Valduriez, “Weaving Models with

the Eclipse AMW plugin,” presented at Eclipse Modeling

Symposium, Eclipse Summit Europe 2006, Esslingen, Germany,

2006.

[15] Fundamental Security Concepts. [Online]. Available:

http://www.mhprofessional.com/downloads/products/0072254238/00

72254238_ch01.pdf .

[16] G. Pedraza and J. Estublier, “Distributed Orchestration versus

Choreography:The FOCAS Approach,” presented at ICSP

International Conference on Software Process, LNCS, Vancouver

Canada: Springer Verlag, May 16-17.

[17] A. Banerjee and D. A. Naumann, “History-based acce ss control and

secure information flow,” in G. Barthe, L. Burdy, M. Huisman, J.-L.

Lanet, T. Muntean, (eds.), Cassis 2004 LNCS, vol. 3362, Heidelberg:

Springer, 2005.

[18] P. W. Fong, “Access control by tracking shallow execution history,”

IEEE Symposium on Security and Privacy, 2004.

[19] C. Skalka and S. Smith, “History effects and verification,” in W.-N.

Chin, (ed.), APLAS 2004 LNCS, vol. 3302, Heidelberg: Springer,

2004.

[20] M. Bartoletti, P. Degano, G. L. Ferrari, and R. Zunino, Secure Service

Orchestration, Berlin Heidelberg: Springer-Verlag, pp. 24–74, 2007.

[21] P. W. Fong, “Access control by tracking shallow execution history,”

IEEE Symposium on Security and Privacy, 2004.

[22] A. Lapadula, R. Pugliese, and F. Tiezzi, “A calculus for orchestration

of web services,” European Symposium in Programming Languages,

2007.

[23] A. Lazovik, M. Aiello, and R. Gennari, “Encoding requests to web

service compositions as constraints,” in: P. van Beek, (ed.), CP 2005,

LNCS, vol. 3709, Heidelberg: Springer, 2005.

[24] J. Misra, “A programming model for the orchestration of web

services,” presented at 2nd International Conference on Software

Engineering and Formal Methods, 2004.

[25] M. Bartoletti, P. Degano, and G. L.Ferrari, “Planning and verifying

service composition,” Technical Report TR-07-02, Dip. Informatica,

Univ. of Pisa.

[26] M. Bartoletti, P. Degano, and G. L. Ferrari, “Enforcing secure service

composition,” in Proc. 18th Computer Security Foundations

Workshop, 2005.

[27] A. Banerjee and D. A. Naumann, “History-based access control and

secure information flow,” in G. Barthe, L. Burdy, M. Huisman, J.-L.

Lanet, and T. Muntean, (eds.), Cassis 2004. LNCS, vol. 3362,

Heidelberg: Springer, 2005.

[28] B. Atkinson et al.. (2002). Web Services Security (WS-Security).

[Online]. Available: http://www.oasis-open.org

[29] K. Bhargavan, C. Fournet, and A D. Gordon, “Verified reference

implementations of WS-security protocols,” in M. Bravetti, M. N ú˜

nez, and G. Zavattaro, (eds.), WS-FM 2006. LNCS, vol. 4184,

Heidelberg: Springer, 2006.

[30] D. Gorla, M. Hennessy, and V. Sassone, “Security policies as

membranes in systems for global computing,” Logical Methods in

Computer Science, vol. 1, no. 3, 2005.

Aradhana Goutam is pursuing Ph.D. Devi Ahilya

Vishwavidyalaya, in Indore (M.P.). She is an

assistant professor of the Department of Information

Technology, Father Conceicao Rodrigues College of

Engineering, Bandra (West), Mumbai. She has totally

7 years of experience.

Raj Kamal was born in 1949. He obtained his Ph.D.

in 1972, in IIT Delhi. He is a senior-most Professor in

Devi Ahilya University School of Computer Sciences,

Electronics and Information Technology. He has

totally 43 years of teaching and research experience.

Former-Vice Chancellor Total 9½ Months (Indore,

2006-07 and 2009). He has published totally 109

research papers in journals and conferences of both

international and national repute.

He has twelve text books (refer www.rajkamal.org) for students of

Computer, Electronics, Communication and Information Technology,

which includes books on Embedded Systems and Internet and Web

technologies published from McGraw-Hill India, McGraw-Hill China,

McGraw-Hill South Korea, McGraw-Hill Singapore, McGraw-Hill U.S.A.

Computer Architecture Schaum Series, Mobile Computing Oxford Univ.

Press and Microcontroller- Pearson Education.

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

184

Maya Ingle is a professor of SCSIT, DAVV,

Indore. He obtained his Ph.D of Computer Science

in Devi Ahilya University, Indore (M.P.) India,

M.Tech (CS) Indian Institute of Technology,

Kharagpur, India, Post Graduate Diploma in

Automatic Computation, University of Roorkee,

Roorkee, India, and M.Sc. (Statistics) Devi Ahilya

University, Indore (M.P.) India. He has around 80 research papers which

have been published in International/ National Journals and Conferences.

Around 26 years of Technical and Administrative experience. Major

Research Areas of Interest is Software Engineering, Statistical Natural

Language Processing, Usability Engineering, Agile computing, Natural

Language Processing, Theoretical Computing, Algorithms, Object Oriented

Software Engineering.

